24,797 research outputs found

    Word Activation Forces Map Word Networks

    Get PDF
    Words associate with each other in a manner of intricate clusters^1-3^. Yet the brain capably encodes the complex relations into workable networks^4-7^ such that the onset of a word in the brain automatically and selectively activates its associates, facilitating language understanding and generation^8-10^. One believes that the activation strength from one word to another forges and accounts for the latent structures of the word networks. This implies that mapping the word networks from brains to computers^11,12^, which is necessary for various purposes^1,2,13-15^, may be achieved through modeling the activation strengths. However, although a lot of investigations on word activation effects have been carried out^8-10,16-20^, modeling the activation strengths remains open. Consequently, huge labor is required to do the mappings^11,12^. Here we show that our found word activation forces, statistically defined by a formula in the same form of the universal gravitation, capture essential information on the word networks, leading to a superior approach to the mappings. The approach compatibly encodes syntactical and semantic information into sparse coding directed networks, comprehensively highlights the features of individual words. We find that based on the directed networks, sensible word clusters and hierarchies can be efficiently discovered. Our striking results strongly suggest that the word activation forces might reveal the encoding of word networks in the brain

    Movement-efficient Sensor Deployment in Wireless Sensor Networks

    Full text link
    We study a mobile wireless sensor network (MWSN) consisting of multiple mobile sensors or robots. Two key issues in MWSNs - energy consumption, which is dominated by sensor movement, and sensing coverage - have attracted plenty of attention, but the interaction of these issues is not well studied. To take both sensing coverage and movement energy consumption into consideration, we model the sensor deployment problem as a constrained source coding problem. %, which can be applied to different coverage tasks, such as area coverage, target coverage, and barrier coverage. Our goal is to find an optimal sensor deployment to maximize the sensing coverage with specific energy constraints. We derive necessary conditions to the optimal sensor deployment with (i) total energy constraint and (ii) network lifetime constraint. Using these necessary conditions, we design Lloyd-like algorithms to provide a trade-off between sensing coverage and energy consumption. Simulation results show that our algorithms outperform the existing relocation algorithms.Comment: 18 pages, 10 figure

    Development of Novel Calibrations for FT-NIR Analysis of Protein, Oil, Carbohydrates and Isoflavones in Foods

    Get PDF
    The development of calibration methodology for novel FT-NIRS analysis of soybean-based foods is presented together with high-precision NIRS spectra and composition measurements in terms of proteins, oil and carbohydrates in soybean-based foods/soy foods.
&#xa

    A construction of pooling designs with surprisingly high degree of error correction

    Get PDF
    It is well-known that many famous pooling designs are constructed from mathematical structures by the "containment matrix" method. In this paper, we propose another method and obtain a family of pooling designs with surprisingly high degree of error correction based on a finite set. Given the numbers of items and pools, the error-tolerant property of our designs is much better than that of Macula's designs when the size of the set is large enough

    Movement-Efficient Sensor Deployment in Wireless Sensor Networks With Limited Communication Range.

    Get PDF
    We study a mobile wireless sensor network (MWSN) consisting of multiple mobile sensors or robots. Three key factors in MWSNs, sensing quality, energy consumption, and connectivity, have attracted plenty of attention, but the interaction of these factors is not well studied. To take all the three factors into consideration, we model the sensor deployment problem as a constrained source coding problem. %, which can be applied to different coverage tasks, such as area coverage, target coverage, and barrier coverage. Our goal is to find an optimal sensor deployment (or relocation) to optimize the sensing quality with a limited communication range and a specific network lifetime constraint. We derive necessary conditions for the optimal sensor deployment in both homogeneous and heterogeneous MWSNs. According to our derivation, some sensors are idle in the optimal deployment of heterogeneous MWSNs. Using these necessary conditions, we design both centralized and distributed algorithms to provide a flexible and explicit trade-off between sensing uncertainty and network lifetime. The proposed algorithms are successfully extended to more applications, such as area coverage and target coverage, via properly selected density functions. Simulation results show that our algorithms outperform the existing relocation algorithms

    Pooling designs with surprisingly high degree of error correction in a finite vector space

    Get PDF
    Pooling designs are standard experimental tools in many biotechnical applications. It is well-known that all famous pooling designs are constructed from mathematical structures by the "containment matrix" method. In particular, Macula's designs (resp. Ngo and Du's designs) are constructed by the containment relation of subsets (resp. subspaces) in a finite set (resp. vector space). Recently, we generalized Macula's designs and obtained a family of pooling designs with more high degree of error correction by subsets in a finite set. In this paper, as a generalization of Ngo and Du's designs, we study the corresponding problems in a finite vector space and obtain a family of pooling designs with surprisingly high degree of error correction. Our designs and Ngo and Du's designs have the same number of items and pools, respectively, but the error-tolerant property is much better than that of Ngo and Du's designs, which was given by D'yachkov et al. \cite{DF}, when the dimension of the space is large enough
    • …
    corecore